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Abstract. Horizontal mixing has been found to play a crucial
role in the development of spatial plankton structures in the
ocean. We study the influence of time and length scales of
two different horizontal two-dimensional (2-D) flows on the
growth of a single phytoplankton patch. To that end, we use
a coupled model consisting of a standard three component
ecological NPZ model and a flow model able to mimic the
mesoscale structures observed in the ocean. Two hydrody-
namic flow models are used: a flow based on Gaussian cor-
related noise, for which the Eulerian length and time scales
can be easily controlled, and a multiscale velocity field de-
rived from altimetry data in the North Atlantic ocean. We
find the optimal time and length scales for the Gaussian flow
model favouring the plankton spread. These results are used
for an analysis of a more realistic altimetry flow. We discuss
the findings in terms of the time scale of the NPZ model, the
qualitative interaction of the flow with the reaction front and
a Finite-Time Lyapunov Exponent analysis.

1 Introduction

Spatial heterogeneity or “patchiness” in phytoplankton dis-
tributions is an old oceanographic observation that dates back
to the 12th century (Griffiths, 1939; Bainbridge, 1957) and is
still a field of current research. Phytoplankton forms the base
of the food chain and is responsible for a large amount of
the biological primary production in the oceans. Therefore,
it plays an important role for the entire marine ecosystem.
Furthermore, it acts on the ocean’s CO2 uptake, as a part
of the carbon absorbed in phytoplankton by photosynthesis
is transported to deep water, when dead plant material sinks
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down. A striking feature associated with the dynamics of
phytoplankton populations is the occurrence of rapid and ex-
tensive bloom formations. Such events are characterised by
a sharp rise in algae concentration of up to several orders of
magnitude (Beltrami and Carroll, 1994) followed by a sud-
den collapse, whereby the phytoplankton populations return
to their original low level. Some phytoplankton species are
toxic, so their appearance in large numbers have the poten-
tial to damage higher organisms such as zooplankton, shell-
fish and fish. Given the impact of phytoplankton blooms, it
is of interest to understand the dynamics of plankton growth
and the conditions for a rapid and wide-spreading plankton
patch.

A plankton population in the ocean can be seen as a bio-
logical system with predator-prey dynamics in a mobile en-
vironment that alters its spatial distribution. As the well-lit
surface layer of the ocean is normally nutrient poor, a nutrient
source is necessary to start a rise in phytoplankton concen-
tration above a low stationary level. Apart from occasional
aeolian dust deposition (Pasquero et al., 2005), upwelling
of nutrient-rich water from deeper water layers or vertical
mixing is assumed to be the main nutrient source (Mahade-
van and Archer, 2000; Mahadevan and Tandon, 2006; Lévy,
2008; Oschlies and Garcon, 1998). A variety of hydro-
dynamical effects leading to vertical transport is reported
(Lévy, 2008; Martin et al., 2001), many of which may be
highly localized in space. They represent an important cause
for plankton patchiness.Pasquero et al.(2005) showed that
not only does the mean value of the nutrient flux influence
the primary production but especially its temporal and spa-
tial variability. The dependence of the primary production
on temporal variability was analysed considering the intrin-
sic time scales of the plankton system.Martin et al.(2002)
andPasquero et al.(2005) found a lower primary production
for nutrient sources correlated with eddy cores than for un-
correlated source positions.
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Assuming the presence of a nutrient source, horizontal
transport, due to the turbulent velocity field on the mesoscale
and sub-mesoscale (∼1−500 km), modifies the patterns in
the plankton distribution and influences the temporal deve-
lopment of plankton patches (Abraham, 1998; Martin, 2003;
Lévy and Klein, 2004; McKiver et al, 2009). Lehahn et al.
(2007) found that the gradients in chlorophyll concentration
fields from satellite images align with unstable manifolds of
the geostrophic velocity field which suggests that horizontal
transport controls the chlorophyll patterns. See (Haller and
Yuan, 2000; Wiggins, 2005) for a description of stretching
and folding of a passive tracer in 2-D turbulence and an ex-
planation of the concepts of a Lagrangian flow analysis that
can also be applied to reactive tracers.

As the ocean is a multiscale system, a single plankton
patch is advected and mixed by flow structures of very dif-
ferent time and length scales. The interaction of these scales
with the parameters of the plankton system affects the spa-
tiotemporal development of a plankton patch. A minimum
width for phytoplankton filaments can be calculated, which
is determined by a few parameters describing the flow and
the growth of the plankton system (Martin, 2000; McLeod
et al., 2002). Sandulescu et al.(2007) reported simulated lo-
calized plankton blooms in vortices in the wake of an island,
when the long residence time of water masses in the vortices
is comparable to the plankton growth time.

In this paper, we focus on the interplay of length and time
scales of a 2-D horizontal flow with the plankton dynami-
cal system. We investigate the response of a plankton model
to a well-defined hydrodynamical forcing and address the
question under which flow conditions does a plankton patch
evolving from a single localized nutrient source spread op-
timally. We, therefore, chose a simple model flow defined
by autocorrelation length and time and analyse the final size
of the plankton patch. The results are compared to a similar
analysis of plankton patches in a multiscale altimetry flow,
including an example of two plankton patches where the ef-
fect of different length and time scales can be seen. We do
not correlate nutrient upwelling regions to flow structures, as
we investigate the response of the plankton system to basic
spatiotemporal properties of a model flow.

The paper is organized as follows: Section2 describes the
numerical models for the hydrodynamic flow and the plank-
ton system, as well as their coupling. In Sect.3, the effect
of flow time and length scales on plankton patch size is anal-
ysed. The final section comprises of the conclusions.

2 Models

The role of the mesoscale flow structures for the evolution
of a phytoplankton patch is studied considering a 2-D in-
compressible flow, so that the velocity field is given by
V = ez ×∇ψ , whereψ(x,y,t) is a time-dependent stream
function. An ecological model coupled to the flow models
the phytoplankton production.

2.1 The hydrodynamic models

To study the effects of length and time scales of a flow on
a phytoplankton patch, we use two flow models, an ana-
lytic one and another more realistic one. Figure1 shows
the two stream functions corresponding to the two depicted
flows. An analytic Gaussian correlated flow is especially
appropriate in investigating the influence of time and length
scales on plankton production, because its time and spatial
scales are independent and can be adjusted a priori. The ob-
tained results for this artificial flow are compared to a similar
analysis for a flow derived from satellite altimetry measure-
ments.

2.1.1 Gaussian correlated flow

The Gaussian correlated flow is defined in terms of a stream
function with dynamics represented by a Gaussian spa-
tiotemporal distributed noise. The noise has zero mean and
the spatiotemporal autocorrelation functionG(ρ,s) is given
by

〈ψ(r,t)ψ
(
r ′,t ′

)
〉 = G

(∣∣r −r ′
∣∣,∣∣t− t ′∣∣) =

ϒ
(∣∣r −r ′

∣∣/λ)2(∣∣t− t ′∣∣/τ), (1)

with r = (x,y). The temporal correlation function,2(s/τ),
describes an Ornstein-Uhlenbeck (OU) process given by

2(s/τ)=
1

τ
exp(−s/τ) (2)

whereτ corresponds to the correlation time for the OU pro-
cess ands=

∣∣t− t ′∣∣. The spatial correlation is

ϒ(ρ/λ)=
σ 2

2πλ2
exp

(
−ρ2/2λ2

)
, (3)

whereσ 2 is the noise intensity,λ is the correlation length and
ρ =

∣∣r −r ′
∣∣. In order to study the effects of noise, the noise

dispersionG(0,0) is kept constant

G(0,0)=
σ 2

2πτλ2
= const (4)

while varyingτ or λ. Thus, an artificial flow is defined by
specific, typical Eulerian time and length scales for the ve-
locity. Details on the numerical generation of a spatiotempo-
ral correlated noise given by Eqs. (2–4) are given inAlonso
et al.(2002) andSagúes et al.(2007).

2.1.2 Altimetry flow

For the more realistic flow case, we consider surface currents
derived from satellite altimetry data provided by AVISO. The
Ssalto/Duacs system processes data from all altimeter mis-
sions (Jason-1&2, TOPEX/Poseidon, Envisat, GFO, ERS-
1&2 and Geosat) and merges the data from all available
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Fig. 1. Stream function for the Gaussian model(a) and the altimetry data(b). Parameters: (a)τ/T = 1, λ/L= 10, andNx =Ny = 128; (b)
the area of simulation spans from 25◦N to 49◦N , and from 7◦W to 50◦W (Nx = 130,Ny = 90). The marked area in the altimetry data is
analysed in detail later. The visible land structure is the coast of Spain and Morocco.

satellites. The global maps of Sea Level Anomaly (SLA)
are about a seven-year mean and have a spatial resolution of
(1/3)◦ on a Mercator grid and a temporal resolution of 1 day.
For this dataset, geostrophic velocities are estimated as

Vx = −
g

fRT

∂ψSLA

∂φ
Vy =

g

fRT cosφ

∂ψSLA

∂`
(5)

whereψSLA is the SLA,g is the gravity,f the Coriolis pa-
rameter,RT the Earth radius,φ the latitude and̀ the lon-
gitude, and the derivatives were calculated with finite differ-
ences. The analysed data is from 12 November 2008. We
chose the area to include a wide range of velocity absolute
values and different local length scales, always keeping in
mind that the geostrophic velocities from altimetry data are
only a rough estimate of the ocean currents and altimetry data
only resolves mesoscale structures.

2.2 NPZ model

We use a well-established NPZ ocean ecosystem model rep-
resenting the plankton dynamics (Fasham et al., 1990; Os-
chlies and Garcon, 1999; Franks, 2002; Martin et al., 2002;
Pasquero et al., 2005). It is a three component model de-
scribing the interaction of three species of the trophic chain:
nutrientsN , phytoplanktonP , and zooplanktonZ. Their
concentrations evolve according to the following equations
(Pasquero et al., 2005; Sandulescu et al., 2007, 2008),

Ṅ =FN = 8N −f (N,P )+

+µN

(
(1−γ )g(P,Z)+µPP +µZZ

2
)

Ṗ =FP = f (N,P )−g(P,Z)−µPP (6)

Ż=FZ = γg(P,Z)−µZZ
2

and

f (N,P ) = β
N

kN +N
P

g(P,Z) =
αηP 2

α+ηP 2
Z. (7)

The reader is referred to (Oschlies and Garcon, 1999; Pas-
quero et al., 2005) for a detailed description of the model
including an explanation of the different interaction terms.

Since we assume a 2-D flow, vertical mixing, which is a
determinant factor for phytoplankton formation, must be pa-
rameterized. We consider a constant high nutrient concentra-
tionN0 below the mixed layer (Martin et al., 2002; Pasquero
et al., 2005). The upward nutrient flux then is

8N = S(x,y)(N0−N), (8)

where the functionS(x,y) determines the strength of the up-
welling depending on the position in the flow. 1/S(x,y) is
the corresponding relaxation time. Equation (8) reflects the
fact that nutrients are brought up to the surface from deep
waters via turbulent mixing or upwelling. The parameters
used are taken from (Pasquero et al., 2005; Sandulescu et al.,
2007, 2008) and are shown in Table1. For this set of pa-
rameters, the model dynamics exhibits stationary behaviour
in the long-term limit. To obtain dimensionless values, all
quantities and parameters in the model are measured in units
of lengthL= 25 km, timeT = 30 days and nitrogen mass
M = 1012 mmol N followingSandulescu et al.(2007).

2.3 Numerical methods and initial conditions

The coupling of the hydrodynamic and NPZ models yields a
reaction-diffusion-advection system described by the follow-
ing set of partial differential equations:

∂C
∂ t

+(V ·∇)C = F(C)+D∇
2C. (9)

Here, C = [N,P,Z] and F = [FN ,FP ,FZ] is given by
Eqs. (6–8). For 2-D incompressible flows, the velocityV =[
Vx,Vy

]
of an advected particle is given byV = ez ×∇ψ .
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Table 1. List of parameters used in the NPZ model, Eqs. (6–8).

parameter value dimensionless
value

β 0.66 d−1 19.8
η 1 (mmol N m−3)−2 d−1 0.12288
γ 0.75 0.75
α 2 d−1 60
Sl 0.00648 d−1 0.1944
Sh 0.648 d−1 19.44
kN 0.5 mmol N m−3 7.8125
µN 0.2 0.2
µP 0.03 d−1 0.9
µZ 0.2 (mmol N m−3)−1 d−1 0.384
N0 8 mmol N m−3 125

The stream functionsψ(x,y,t) are described in Sect.2.1.
Following Sandulescu et al.(2007), we use a constant value
for the diffusion of all the biological fieldsD = 10 m2/s
which is given by the Okubo estimation (Okubo, 1971). The
dimensionless value used wasD = 0.04147. Nevertheless,
for the scales considered here, diffusion of biological trac-
ers plays a limited role and the dominant effect is the ex-
plicit spatial advection (see alsoBracco, 2009). The reaction-
diffusion-advection problem was integrated numerically on
aNx×Ny square lattice using a semi-Lagrangian algorithm
(Staniforth and Cote, 1991; Spiegelman and Katz, 2006; Pas-
quero et al., 2005; Sandulescu et al., 2007) with spatial step
size1x = 1.0 and time step1t = 10−3. The algorithm in-
duces a numerical diffusion that is smaller than the real dif-
fusion for the biological tracers (Sandulescu et al., 2007) and
the spatial advection.

As an initial condition, all biological concentrations were
set to their steady value,N0 = 0.185, P0 = 0.355 and
Z0 = 0.444 mmol N m−3 for a low nutrient flux withS =

Sl = 0.00648 d−1, simulating a nutrient-poor domain (Pp0 =

0.0633 mmol N m−3 d−1). In order to start the evolution of a
plankton patch, we consider the effect of local upwelling and
assume local, strong, vertical mixing leading to a nutrient-
rich spot in the mixed layer. This is numerically simulated by
imposing a hundred-times larger value of the nutrient trans-
fer rateS = Sh = 0.648 d−1 on a small region of 3×3 grid
points (75 km×75 km). For each run, the stream function for
the flow is random, so the position of the nutrient source, al-
ways in the middle of the domain, is uncorrelated with the
flow. The upwelling is switched on for an active timeTf af-
ter whichS is set to its low value again. In this paper, we
keep constant the active period ofTf /T = 3 (Tf = 90 days).
The influence of a periodic active timeTf on the primary
production was analysed byPasquero et al.(2005). Periodic
boundary conditions were imposed on the concentrations and
velocity gradients for the Gaussian flow model. To quan-

λ

τ

(a)

(b) (c) (d)

(e)

Fig. 2. Phytoplankton patches observed for different pairs of time
and length scales (τ,λ) for the Gaussian flow, Eqs. (2–4). Length
scale increases from bottom to top, and the temporal correlation
scale from left to right. Note the larger patch size for inter-
mediate values ofτ and λ. Set of parameters:G(0,0) = 225,
Nx =Ny = 128. Length and time scales (log10(τ/T ),log10(λ/L)):
(a) (−0.5,1.5), (b) (−1.25,1), (c) (−0.5,1), (d) (1.5,1), (e)
(−0.5,−0.5).

tify the phytoplankton population as a function of the time
and length scales of the flow, we compute the plankton patch
areaBs as the area where the phytoplankton concentrationP

is clearly larger than the steady state concentrationP0

Bs =

∫
P>1.1P0

dA (10)

Maximal plankton concentrations in the patch are approxi-
matelyP/P0 ≈ 1.5, so the criterion ofP >1.1P0 is adequate
to separate the patch from the background concentration.

3 Results

3.1 Gaussian flow – optimal time and length scales

The effect of how time and length scales of the flow act on
the development of a phytoplankton patch is shown in Fig.2
for the Gaussian flow model. In this case, a nutrient source
with a high transfer rateS= Sh and a size of 3×3 grid points
was set at the center of the 128×128 domain and initiated
the development of a plankton patch. The advective flow is
obtained from the Gaussian correlated stream function de-
fined by length scaleλ and time scaleτ . During the whole
simulation of 30 days the nutrient source was switched on.
Note that for the intermediate values of the time and length
scales (panel c) the advective velocity field interacts espe-
cially with the expanding reaction front which results in a

Nonlin. Processes Geophys., 17, 1–10, 2010 www.nonlin-processes-geophys.net/17/1/2010/
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)
=

(−0.5,−0.5), red dashed line(−0.5,1) and green dashed-dotted line(−0.5,1.5). Set of parameters:G(0,0)= 225,Nx =Ny = 128 and
active upwelling timeTf /T = 3 (gray shade).

folded structure of the front and a larger patch size than in the
other cases. In the vertical three images, with different length
scales (panels a, c, e), it is apparent that for small length cor-
relations (panel e) the patch grows mostly as a circular wave
with small scale perturbations of the front, whereas for large
length scales (panel a) the patch is just advected to the right.
The horizontal three images with different time scales (pan-
els b, c, d) shows that for intermediate values of the time
correlation, the patch is most deformed and has areas of still
low but increasing plankton concentrations (green). This be-
haviour might correspond to a resonant behaviour between
the flow time scale and the time scale of the NPZ model,
analysed in detail later.

To give a qualitative understanding, why optimal Eulerian
time and length scales for the growth of the phytoplankton
patch in the Gaussian flow can be expected, we consider the
two limiting cases ofτ → 0 andτ → ∞ for a constantλ.
For τ → 0 and finite dispersion, Eq. (4), the intensity of the
flow σ 2 tends to zero and the stream function vanishes. In
this case, the diffusive non-advective case is recovered. For
τ → ∞ a steady unidirectional flow is obtained. In this case,
relevant fluctuations of the flow are infrequent and their ef-
fects on the system are small (Lorenzo et al., 2003; Sagúes
et al., 2007). The two limiting cases forλ can be found with
an analogous reasoning (Eq. 4). Forλ→ 0 the totally uncor-
related diffusive case is reached and forλ→ ∞ the unidirec-
tional flow cannot fold and distort the reaction front.

The temporal evolution of the phytoplankton patch size for
different Eulerian time and length scales is shown in Fig.3a.
Note that independently ofτ and λ, a steady patch size
is rapidly attained after an initial timeT1 ≈ 0.3T ≈ 9 days.
It decays to zero after the nutrient source is switched off
for times t/T > Tf /T . The size of the plankton patch is
largest for intermediate values ofτ andλ (red dashed line
in panel a), as explained above. For an Eulerian flow time
scaleτ , order of magnitude of the initial timeT1, the patch
size is maximal which suggests a kind of resonant behaviour

between the flow and the plankton dynamical system. At an
exemplary grid point close to the nutrient source, initially, the
plankton concentration rapidly increases due to a high nutri-
ent flux which is caused by the short relaxation timeS−1

h and
the large nutrient difference(N0−N) (Fig. 3b). During the
active periodTf , flow fluctuations give rise to changes in the
phytoplankton concentration, when different fluid parcels are
advected over the chosen grid point. Note that these fluctua-
tions are larger and more frequent for intermediate values of
τ andλ corresponding to a distorted reaction front that curls
and folds continuously. Finally, the plankton concentration
relaxes towards the stationary value.

The obtained results for the Gaussian flow are summa-
rized in Fig.4 where the mean plankton patch size is rep-
resented as a function of Eulerian time and length scales
of the flow. λ and τ are both varied independently over
more than two orders of magnitude (2.5 km<λ<790 km and
0.3 days<τ<950 days) exploring typical ocean mesoscales
and beyond. For a fixed parameter pair(τ,λ) the mean patch
size is calculated as the average of the value〈Bs〉T1<t<Tf

over 30 runs. Clearly a global maximum of the patch size
is obtained for intermediate values ofτ = τc ≈ 9− 17 days
andλ= λc ≈ 140−250 km.

In order to study the influence of the mixing properties
of the chosen flow on the phytoplankton growth, we mea-
sure the mixing efficiencyς (τ,λ,t) in terms of finite-time
Lyapunov exponents3(r,t) (FTLE, see AppendixA). For a
certain Gaussian flow with a constant time scaleτ and length
scaleλ, the mean mixing efficiency is defined as the mean of
the FTLE values over the 3×3 area of the nutrient source

ς (τ,λ,t)= 〈3(r,t)〉3×3 , (11)

to quantify the relevant mixing for the plankton patch. Fig.5
shows the mean mixing efficiencyς(t=30 days) as a function
of the parameters(τ,λ). The parameter space is the same as
in Fig. 4. Note that the maximum value of the mixing effi-
ciencyς (τ,λ) is obtained for different values of(τ,λ) as the

www.nonlin-processes-geophys.net/17/1/2010/ Nonlin. Processes Geophys., 17, 1–10, 2010
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conditions for the flow. Set of parameters as in Fig.3.

maximum patch size in Fig.4. A flow with a maximum mix-
ing efficiency provides optimal mixing for passive tracers,
whereas a comparison between Figs.4 and5 suggests that
reactive plankton does not spread optimally under the same
conditions.

The mixing efficiency calculated from FTLE values can
also be interpreted as a Lagrangian time scale 1/ς of the flow,
representing the typical time for tracer separation along the
trajectory of the patch. It is obvious from Fig.5 that, for the
Gaussian flow, this Lagrangian time scale depends on both
the Eulerian time and length scale. For optimal Eulerian val-
ues (τc,λc) concerning patch size, the Lagrangian time scale
is τL=1/ς(τc,λc)≈10 days which is approximately the typi-
cal reaction timeT1≈9 days the plankton needs to grow after
the switch-on of the nutrient source. Faster mixing seems
unfavourable for the spread of the plankton patch, because
the patch is diluted before having grown: slower mixing re-
duces the patch size due to a lack of transport. Although the
optimal Lagrangian time scale is provided by the flow for a
range of (τ,λ) values (yellow circle in Fig.5), the maximal
patch size is only obtained for large Eulerian length scales of
the flow.

From the previous academic flow model, we found that
there exists optimal time and length scales favouring phyto-
plankton growth for the used NPZ model. For these optimal
scales, the front becomes much more distorted than for the
other scales and the final patch area is the largest. Observa-
tions of the dynamics of the modelled phytoplankton patch
show that flow regions of low velocity values (approximate
constant stream function) trap and confine the plankton in
“optimal conditions” while the bloom occurs. The surround-
ing filaments with larger velocity values tend to transport
the plankton while not allowing it to grow laterally towards
the transport direction. This indicates that optimal time and
length scales are needed to promote these optimal conditions.
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Fig. 5. Mean mixing efficiencyς (τ,λ) [days−1] in terms of FTLE
values at the nutrient source Eq. (11) as a function of Eulerian time
and length scales (τ,λ) for the Gaussian flow, Eqs. (2–4). Set of
parameters as in Fig.3.

3.2 Altimetry flow

In this section, we analyse the development of phytoplankton
patches for a more realistic flow model derived from satel-
lite altimetry data, Eq. (5). We chose a multiscale region of
the North Atlantic, where eddies with different length scales
are clearly visible (Fig.1b). Although the real altimetry flow
changes over the integration time of 30 days, we use a simpli-
fied stationary flow. This allows for a better local definition
of time and length scales and reveals well-defined flow struc-
tures that influence the plankton spreading. As in the Gaus-
sian flow, a 3×3 constant nutrient source is set with its centre
positioned at each grid point of the 130×90 domain to initi-
ate a plankton patch. Then the phytoplankton patch evolving
from each of these nutrient sources is modelled with the NPZ
model. After 30 days the final patch sizeBs is calculated as
in Eq. (10). Figure6 shows the patch size as a function of
the position of the nutrient source in the altimetry flow. It
is obvious that the position of the nutrient source in the flow
strongly affects the evolution and, therefore, the final size of
the plankton bloom.

In order to compare the phytoplankton growth in the al-
timetry flow to that in the Gaussian flow, we compute time
and length scales for each point in the constant altimetry ve-
locity field. As Lagrangian time scaleτL we use again the
local reciprocal Finite-Time Lyapunov ExponentτL = 1/3
at the nutrient source. The local length scaleλ(x) for the
altimetry flow is derived from the autocorrelation function
8(x,r,λ) of the velocity field assuming an exponential de-
cay,

φ(x,r) =

〈
v(x)v(x +r)

|v(x)||v(x +r)|

〉
r=|r|=const

= exp

(
−

r

λ(x)

)
. (12)
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Fig. 6. Phytoplankton patch sizeBs×10−5 km2 after 30 days de-
pending on the position of the nutrient source in the stationary al-
timetry flow. Especially in the black box (also marked in Fig.1b)
strong differences in patch size are obvious.

Thus, we obtain an Eulerian length scale for the altimetry
flow that is very similar to the a priori Eulerian length scale
of the Gaussian flow model, which is also an exponentially
decaying autocorrelation length. The patch size data for
both flow models is binned to these time and length scales,
whereby we discarded the data with few configurations for
(τL,λ) values and, therefore, high errors. Figure7 shows
the phytoplankton patch size as a function of Lagrangian
time and Eulerian length scales for the Gaussian model flow
(panel a) and the altimetry flow (panel b). For both a clear
maximum cannot be observed, as not the whole parameter
space can be covered, but both show a very similar depen-
dence of the patch size on time and length scales. Figure7
suggests that, for the covered parameters, both flows pro-
vide optimal conditions for plankton spread at length scales
λc ≈ 140−250 km andτc ≈ 5−15 days.

Apart from the statistical analysis concerning time and
length scales, it is worthwhile to have a closer look at a se-
lected region of the flow, to analyse the interplay of the dif-
ferent parameters on the plankton spreading. The selected
region is marked in the stream function image (Fig.1) and in
the patch size image (Fig.6). Note that, in the boxed area,
the overall patch size in the lower eddy is significantly larger
than in the upper one, although both eddies have similar ve-
locities and diameters.

Figure8 shows a close-up of the region with two eddies,
marked with letters A and B. In order to understand the dif-
ferent dynamics in both eddies that lead to the variation in
plankton patch size, we exemplary chose two points, one
in each eddy, with a strong difference in patch size. Both
sources are positioned in the rotating eddy with a similar dis-
tance to the centre, respectively. Figure8a, b shows the two
phytoplankton distributions that developed from the chosen
points after 30 days. For graph a the patch size is clearly
larger than for graph b. Figure9 helps to understand these
differences. It shows the plankton patch size in the region of
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Fig. 7. Phytoplankton patch sizeBs×10−5 km2 as a function of
Eulerian length scale (Eq.12) and Lagrangian time scaleτL= 1/3
for the Gaussian flow(a) and the altimetry flow(b).
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Fig. 8. Phytoplankton concentrationP/P0 for two different patches
in the North Atlantic ocean after 30 days of simulation initiated at
the white dot, respectively. Letters A and B mark the centres of
eddies of similar size.

interest (panel a), the local Eulerian length scales (panel b),
Lagrangian time scales (panel c) and the flow structure with
hyperbolic points (panel d) obtained from an analysis of
Finite-Time Lyapunov Exponents. The plankton patch in
eddy A is advected around the eddy in optimal time and
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Fig. 9. Discrepancy in plankton growth in two apparently similar eddies: Size of plankton patch for a selected region in the North Atlantic
Ocean after 30 days of simulation(a). For each grid point, colour indicates the patch sizeBs×10−5 km2 after a nutrient upwelling took
place at that location. Red/blue colour shows areas with larger/smaller phytoplankton patch. In eddy A, plankton growth is favoured. The
representations of Eulerian length scales and Lagrangian time of the flow(b, c) show that both long length scales (λ> 120 km) and short
time scales (τL < 15 days) are necessary for a large plankton patch size. Black boxes at the colour bars show the optimal time and length
scales found for the Gaussian correlated flow. Finite-Time Lyapunov Exponents(d) for the same region and period of time as for panels (a,
b, c) calculated forward (displayed as positive values) and backward (displayed as negative values) integrations in time. The plotted field is
3+

−|3−
| (see AppendixA). Mesoscale structures with jets and vortices can clearly be observed. The black dots indicate the hyperbolic

points that are located at the intersections of the stable (red) and unstable (blue) manifolds. Eddy A is surrounded by 5 hyperbolic points with
the same distance. They act as exits to other favourable regions. The hyperbolic points surrounding eddy B have smaller and less uniform
distances. White dots correspond to the positions of the exemplary nutrient sources in Fig.8

length scales while it successively passes three hyperbolic
points that spread the plankton to neighbouring regions with
favourable conditions too. It, therefore, forms four arms. In
contrast to this, the patch initiated in eddy B is, indeed, also
spread by one hyperbolic point, but into a western region of
small length scales and into an eastern region with long time
scales, so the patch development is hindered. As a result, not

only does the local time and length scales of the flow influ-
ence the growth of the plankton patch, but also the connec-
tion between regions with favourable conditions for plank-
ton growth, which can only be seen in maps of Lagrangian
quantities like the FTLE. Stable and unstable manifolds in
the flow govern the transport of tracers (Lehahn et al., 2007),
while hyperbolic points mark the positions where these mani-
folds cross and the direction of the velocity changes abruptly.

Nonlin. Processes Geophys., 17, 1–10, 2010 www.nonlin-processes-geophys.net/17/1/2010/
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4 Conclusions

The effect of time and length scales of two different fluid
flows on phytoplankton growth has been analysed.

In both cases, we found that growth is enhanced for a crit-
ical time scale comparable to the one associated with the bi-
ological system, as it was also pointed out in previous stud-
ies (Medvinsky et al., 2001; Sandulescu et al., 2007, 2008).
We found an optimal Eulerian time scale for the Gaussian
flow of τc ≈ 9−17 days and optimal Lagrangian time scales
of τc ≈ 5−15 days for the Gaussian and the altimetry flow,
where the relevant time scale for the advected plankton sys-
tem is the Lagrangian one. We observed that for a critical
Eulerian length scale of the order of 140−250 km, the patch
size attains a maximum for the Gaussian flow. For this length
scale, the front becomes more distorted than for other scales
and the final patch area is the largest. A similar result is found
for the altimetry flow.

In terms of spatial Lagrangian properties as the FTLE field
or stable/unstable manifolds, a certain length scale is needed
to balance two unfavourable conditions: on the one hand, for
shorter length scales the flow rapidly mixes the plankton and
does not allow long scale transport, and on the other hand,
for longer length scales few hyperbolic points are present in
the medium and due to the lack of separatrices (stable and
unstable manifolds) the flow does not favour the spreading
of the initial patch in different directions. Thus, length scales
in the FTLE field of a flow can indicate regions where a large
plankton bloom size is expected. However, caution must be
urged with this approach as the present study does not take
into account many physical and biological processes that af-
fect plankton growth such as vertical upwelling, sea temper-
ature, or the depth of the mixed layer and does not resolve
explicitly 3-D effects.

Appendix A

FTLE calculations

The importance of Lagrangian analysis to understand ocean
dynamics has been established during the last decade (see
Griffa et al. (2007) and Neufeld and Herńandez-Garćıa
(2009) and references therein for a review). Among other
techniques, Finite-Time Lyapunov Exponents (FTLE) are
used to quantify mixing and patterns in the spatial FTLE field
reveal coherent structures in the flow. FTLE values are com-
puted from the trajectories of Lagrangian tracers in the flow.
Therefore, a regular grid of tracers is advected by the velocity
field with a linear integration scheme and a bicubic interpo-
lation of the velocity field to the tracer positions. After the
finite time τ , the FTLE fields are computed from the final
tracer positions (Mancho et al., 2006)

3(x)=
1

τ
ln

√
λmax(1(x)), (A1)

where λmax is the largest eigenvalue of the finite-time
Cauchy-Green deformation tensor1, calculated from the
flow map of the tracers.λmax denotes the ratio of stretch-
ing between two initially close tracers in the direction of the
largest stretching. The finite timeτ is chosen to have the
same duration as the plankton simulation, i.e.τ = 30 days, to
detect relevant Lagrangian structures for the plankton spread-
ing. The initial distance of the tracers is 37 km to obtain a
Lagrangian time scale (Fig.9c), which is the same grid as
the plankton simulation. A finer grid of 7.4 km is used to
obtain FTLE ridges and hyperbolic points (Fig.9d). Fig.9d
shows the difference of FTLE fields3±(−) calculated for-
ward (3+) and backward (3−) advection of the tracers in
time (d’Ovidio et al., 2004, 2009),

3±(−)=3+
−|3−

| (A2)

Unstable manifolds, with a flow towards the hyperbolic
point, appear with positive values and stable manifolds, away
from the hyperbolic point, with negative values. Hyperbolic
points can be extracted by determining the local maxima in
the added field3±(+) (not shown here).
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